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3. OVERVIEW OF STATISTICAL SUMMARIES 
This section provides general information about statistical and psychometric summaries used for 
the 2004 MSA-Reading program. Actual statistical results described in this section appear in 
section 4 and Appendices.  

3.1 Classical Descriptive Statistics 

Table 4.1 and 4.2 contain the classical descriptive statistics of each form for each grade and 
includes: 

• Form number 
• Number of items 
• Numbers of students1 
• Means and standard deviations of raw scores 
• Stratified Cronbach Alpha  
• Standard error of measurement (SEM) 

Stratified Cronbach Alpha 
The 2004 MSA-Reading tests included both SR and BCR items. Consequently, it was asked to 
use an adequate reliability coefficient that addressed the important factor, different item type. 
The following formula depicts the reliability coefficient, Stratified Cronbach Alpha:  
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where  

σ 2
i  = variance of score on cluster i, 

σ 2
t  = variance of total score, and 

    ρ 'ii  = reliability coefficient of score on cluster i.  

 
These tests were initially considered to be classically congeneric (i.e., besides having unequal 
means and unequal variances in error and observed scores, the test forms also have heterogeneity 
of true-score variances) where the tasks within the examinations were stratified based on the 
type of item (i.e., multiple-choice, short answers, extended responses, and extended writing) and 
by the scoring rubric attached to these items.  

Upon examining the variance/covariance matrices, however, it became apparent that in some 
cases the part covariance of a part was not heterogeneous with respect to other part variances 

                                                 
1 Note the numbers of students reported in these tables may be lower than the totals reported in the statewide 
summaries. These analyses were based on the sample of data used to equate the forms of the 2004 MSA-Reading.  
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(e.g., the covariance between multiple-choice items and extended responses and between 
multiple-choice items and extended writing for grade 3 writing). It was, therefore, determined 
that although the test forms were congenerically parallel, they were not classically congeneric 
(Qualls, 1995). For the 2004 MSA-Reading, therefore, the test forms were divided into two strata 
made up of SR and BCR items, and the Stratified Cronbach Alpha was used as the reliability 
coefficient.  

Standard Error of Measurement (Based on Classical Test Theory) 
The standard error of measurement (SEM) is the standard deviation of errors of measurement 
that are associated with test scores from a particular group of examinees. In here, a measurement 
error is the difference between an examinee’s actual or obtained score and the theoretical true 
score counterparts. Consequently, the SEM is commonly used in interpreting and reporting 
individual test scores and score differences on tests (Harvill, 1991).  

Classical test theory is based on the following assumptions (Andrich & Luo, 2004): 

• Each person v has a true score on the construct, usually denoted by the variable Tv 
• The best overall indicator of the person’s true score is the sum of the scores on the items 

and is usually denoted by the variable Xv 
• This observed score will have an error for each person which is usually denoted by Ev 
• These errors are not correlated with the true score 
• Across a population of people, the errors sum to 0 and they are normally distributed. 

From these assumptions, the following equations can be derived: 

vvv ETX += . 

Therefore,  

  222
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where    

S x
2  = the variance of the observed score in a population of persons,  

St
2  = the variance of their true score variance, and  

Se
2  = the error variance. 

The reliability of the test can be calculated by the following formula: 
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Thus, the SEM is calculated by the following formula:  

  Se = Sx xxr−1 .  

For example, consider a student with a score of 90 from a sample of students with a mean score 
of 60 and variance of 225 on a test with reliability of 0.80. According to the formulas provided 
above, the obtained score is 90, and its SEM is 6.71. Thus, an approximate 68% score band for 
estimating this students’ true score is from 83.29 (90 - 6.71) to 96.71 (90 + 6.71).  
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Note that this equation is only useful to estimate true score when the test reliability is reasonably 
high and the obtained score for the examinee is not an extreme deviate from the mean of the 
appropriate reference group. When we use this equation, consequently, we should be careful 
with statements so that they do not imply greater precision than is actually involved (Harvill, 
1991).  

Conditional Standard Error of Measurement (Based on Item Response Theory) 
Unlike the SEM based on the classical test theory, the SEM based on the item response theory 
(IRT) is not the same for all persons. For example, if a person gets few or a large number of 
items correct, the standard error is greater than if the person gets moderate number of items 
correct. This implies that the standard error of measurement depends on the total score (Andrich 
& Luo, 2004).  

Under the Rasch model, the SEM for each person is as follows: 
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where 

v = subscript for a person,  

i = subscript for an item, 

L = length of the test, 

β̂  = ability estimate, and  

vip  = the probability that a person answers an item correctly and defined as follows: 
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 where vβ  is person’s ability and iδ  is item’s difficulty.  

A confidence band can be found for use in interpreting the ability estimate. For example, an 
approximate 68% confidence interval for β̂ is given by 

β̂  ±  SEM 

Note that the standard error for item difficulty is smallest when the probability of passing is 
close to the probability of failing. That is, when an item is near the threshold level for many 
persons in the sample, the standard error is small (Embretson & Reise, 2000). 
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3.2 Scale Score Descriptive Statistics 

Table 4.3 and Table 4.4 provide information about scale score descriptive statistics of each form 
for each grade and includes: 

• Form number 
• Number of items 
• Numbers of students 
• Mean and standard deviation of scale scores 
• 10% quantile (P10), 25% quantile (Q1), median (P50), 75% quantile (Q3), 90% quantile, 

and IQR (Interquantile Range= Q3-Q1)   
• Conditional standard errors of measurement (SEM) for the proficient and advanced cut 

scores 
In addition, Appendix A provides frequency distributions and histograms of the scale scores of 
the 2004 MSA-Reading.  

3.3 Classical and IRT Item Parameters 

Appendix B provides both classical and IRT-based item parameters and includes:  

• Item type (SR or BCR) 

• P-value: in order for p-values of the BCR items to be comparable with p-values of the SR 
items they were calculated as modified proportions of the maximum obtainable domain 
scores.  

• Point-biserial correlation: a computationally simplified Person’s r between the scored item 
and the total score 

• Rasch difficulty estimate 

• Standard error of the Rasch difficulty 

• Mean-square infit 

• Mean-square outfit 
Item sequence numbers represents merely those items that were chosen to be in the final “score 
form.” 

Fit Statistics for Rasch Model 

Fit statistics are used for evaluating the goodness-of-fit of a model to the data. Fit statistics are 
calculated by comparing the observed and expected trace lines obtained for an item after 
parameter estimates are obtained using a particular model. WINSTEPS provides two kinds of fit 
statistics called mean-squares that show the size of the randomness or amount of distortion of 
the measurement system. 

Outfit mean-squares are influenced by outliers and are usually easy to diagnose and remedy. Infit 
mean-squares, on the other hand, are influenced by response patterns and are harder to diagnose 
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and remedy. Table 3.1 provides a guideline for evaluating mean-square fit statistics (Linacre & 
Wright, 2000). 

In general, mean-squares near 1.0 indicate little distortion of the measurement system, while 
values less than 1.0 indicate observations are too predictable (redundancy, model overfit). 
Values greater than 1.0 indicate unpredictability (unmodeled noise, model underfit). 
Table 3.1 Criteria to Evaluate Mean-Square Fit Statistics 
 

Mean-Square Interpretation 

> 2.0 Distorts or degrades the measurement system 

1.5 – 2.0 Unproductive for construction of measurement, but not degrading 

0.5 – 1.5 Productive for measurement 

< 0.5 Unproductive for measurement, but not degrading. May produce misleadingly 
good reliabilities and separations 

 

3.4 Inter-Rater Reliability 

Tables 4.41 through 4.46 contain information about the scoring agreement between rater 1 and 
rater 2. When the two readers assigned the same score to a student’s answer, the scores were in 
perfect agreement. Scores differed by one score point were adjacent, and scores differed by two 
or more score points were in discrepancy. For further information about inter-rater agreement, 
please see section 1.7. For the 2004 MSA-Reading, the adjacent agreement rates were above 
95%, and perfect agreement rates were above 60% except for several items across all grades.  

3.5 Correlations among Reading Processes 

The 2004 MSA-Reading consisted of three reading processes (strands): General Reading, 
Literary Reading, and Informational Reading. Tables 4.5 through 4.10 contain correlation 
coefficients among these reading processes. Generally, they show moderately strong 
intercorrelations among them. 

3.6 Decision Accuracy and Consistency at the Cut Scores 

Tables 4.11 through 4.16 contain the results of analyses performed to estimate the accuracy and 
consistency of the decisions for passing (proficient) on the 2004 MSA-Reading. The analyses 
make use of the methods outlined and implemented in Livingston and Lewis (1995), Haertel 
(1996), and Young and Yoon (1998). 

The accuracy of a decision is the extent to which it would agree with the decisions that would be 
made if each student could somehow be tested with all possible parallel forms of the 
assessments. The consistency of a decision is the extent to which it would agree with the 
decisions that would be made if the students had taken a different form of the examination, equal 
in difficulty and covering the same content as the form they actually took.  

Students can be misclassified in one of two ways. Students who were below the proficiency cut 
score, but were classified (on the basis of the assessment) as being above a cut score, are 
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considered to be false positives. Students who were above the proficiency cut score, but were 
classified as being below a cut score, are considered to be false negatives.  

For the 2004 MSA-Reading, Tables 4.11 through 4.16 include: 

• Performance level 
• Accuracy classifications 
• False positives 
• False negatives 
• Consistency classifications 

The tables illustrate the general rule that decision consistency is less than decision accuracy.  

3.7 Differential Item Functioning 

This section provides information about differential item functioning (DIF) analyses used for the 
2004 MSA-Reading. For the 2004 MSA-Reading DIF analyses, the reference group was either 
male or Caucasian students, and the focal group was either female or African-American students.  

Since the 2004 MSA-Reading was a mixed-format examination, comprising of both BCR and SR 
items, the DIF procedure used consists of Mantel’s (1963) extension of the Mantel-Haenszel 
procedure (the Mantel Chi-square) for the BCR items and the Mantel-Haenszel procedure 
(Mantel & Haenszel, 1959) for the SR items. 

Brief Constructed Response (BCR) Items 
To help interpret the Mantel Chi-square (Mantel 2χ ), the Educational Testing Service (ETS) 
DIF procedure uses the Mantel statistic in conjunction with the standardized mean difference 
(SMD). 

Mantel Statistic 
The Mantel 2χ  is simply a conditional mean comparison of the ordered response categories for 
reference and focal groups combined over values of the matching variable score. By “ordered” 
we mean that a response of 1 on an item is better than 0, 2 is better than 1, and so on. 
“Conditional,” on the other hand, refers to the comparison of members from the two groups who 
received the same score on the matching variable, i.e., the total test score in our analysis.   

Table 3.2 shows a 2 ×  T ×  K contingency table, where T is the number of response categories 
and K is the number of levels of the matching variable. The values, 

1y , 
2y , …, 

Ty  are the T 
scores that can be gained on the item. The values, Ftkn  and Rtkn , represent the numbers of focal 
and reference groups who are at the thk  level of the matching variable and gain an item score of 

ty . The “+” indicates total number over a particular index (Zwick, Donoghue, & Grima, 1993).  
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Table 3.2  2 ×  T Contingency Table at the thk level  
 

Item Score  
Group 

1y  
2y   

Ty  

Total 

Reference 
kRn 1  kRn 2  … 

RTkn  kRn +  

Focal 
kFn 1  kFn 2  … 

FTkn  kFn +  

Total 
kn 1+  kn 2+  … 

Tkn+  kn ++  

Note. This table was cited from Zwick, et al. (1993) 

 

The Mantel statistics is defined as the following formula: 
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where  

kF  = the sum of scores for the focal group at the thk  level of the matching variable and 
is defined as follows:  
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Under H0, the Mantel statistic has a chi-square distribution with one degree of freedom. In DIF 
applications, rejecting H0 suggests that the students of the reference and focal groups who are 
similar in overall test performance tend to differ in their mean performance. In the case of 
dichotomous items, on the other hand, the statistics is identical to the Mantel-Haenszel (1959) 
statistic without the continuity correction (Zwick, Donoghue, & Grima, 1993).   
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Standardized Mean Difference (SMD) 
A summary statistic to accompany the Mantel approach is the standardized mean difference 
(SMD) between the reference and focal groups proposed by Dorans and Schmitt (1991). This 
statistic compares the means of the reference and focal groups, adjusting for differences in the 
distribution of the reference and focal group members across the values of the matching variable. 

SMD = ∑ ∑−
k k

RkFkFkFk mpmp                                

where  

n
np

F

kF
Fk

++
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1  , the mean item score of the focal group members at the thk  level, 

and  

mRk  = the analogous value for the reference group. 

As can be seen from the equation above, the SMD is the difference between the unweighted item 
mean of the focal group and the weighted item mean of the reference group. The weights for the 
reference group are applied to make the weighted number of the reference group students the 
same as in the focal group within the same ability. A negative SMD value implies that the focal 
group has a lower mean item score than the reference group, conditional on the matching 
variable.  

DIF classification for BCR items 

The SMD is divided by the total group item standard deviation to obtain an effect-size value for 
the SMD. This effect-size SMD is then examined in conjunction with the Mantel 2χ  to obtain 
DIF classifications that are depicted in Table 3.3 below.  

 
Table 3.3 DIF Classification for BCR Items 
 

Category Description Criterion 

AA No DIF 
Non-significant Mantel 2χ  or  

Significant Mantel 2χ  and |SMD/SD| ≤ .17 

BB Weak  DIF Significant Mantel 2χ  and .17 < |SMD/SD| ≤ .25  

CC Strong DIF Significant Mantel 2χ  and  .25 < |SMD/SD|  

Note. SD is the total group standard deviation of the item score in its original metric. 
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Selected Response (SR) Items 
For the SR items, the Mantel-Haenszel Chi-square (M-H 2χ ) in conjunction with the M-H odds 
ratio that is transferred to what ETS calls, the delta scale (D).  

The Odds Ratio 
The odds of a correct response (proportion passing divided by proportion failing) are P/Q or 
P/(1-P). The odds ratio, on the other hand, is simply the odds of a correct response of the 
reference group divided by the odds of a correct response of the focal group.  

For a given item, the odds ratio is defined as follows:   

HM −α  = 
QfP
QP

f

rr

/
/ . 

And, the corresponding null hypothesis is that the odds of getting the item correct are equal for 
the two groups. Thus, the odds ratio is equal to 1: 

H0: HM −α  = 
QfP
QP

f

rr

/
/  = 1. 

The Delta Scale 

In order to make the odds ratio symmetrical around zero with its range being in the interval ∞−  
to ∞+ , the odds ratio is transformed into a log odds ratio as per the following:  

HM −β = )ln( H-Mα . 

The simple natural logarithm transformation of this odds ratio is symmetrical about zero in 
which zero has the interpretation of equal odds. This DIF measure is a signed index where a 
positive value signifies DIF in favor of the reference group while a negative value indicates DIF 
in favor of the focal group. HM −β  also has the advantage of being transformed linearly to other 
interval scale metrics (Camilli & Shepard, 1994). This fact is utilized by ETS in creating their 
delta scale (D), which is defined as follows:  

D = .35.2 HM −⋅− β   

DIF classification for SR items 

The following table depicts DIF classifications for SR items to examine the M-H 2χ  in 
conjunction with the delta scale (D):  
 
Table 3.4 DIF Classification for SR Items 
 

Category Description Criterion 

A No DIF Non-significant M-H 2χ  or |D| < 1.0 

C Strong DIF Significant M-H 2χ  and  |D| ≥ 1.5  

B Weak  DIF Otherwise classified as B 
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3.8 Equating and Scaling 

Tables 4.9 through 4.29 contain information about raw score to scale score conversion tables for 
the 2004 MSA-Reading. Conditional standard errors for the scale scores are also included. 

The Rasch and Partial Credit IRT Models 
The most basic expression of the Rasch model is in the item characteristic curve (ICC). It shows 
the probability of a correct response to an item as a function of the ability level. The probability 
of a correct response is bounded by 1 (certainty of a correct response) and 0 (certainty of an 
incorrect response). The ability is, in theory, unbounded. In practice, the ability scale ranges 
from - 4 to + 4 logits for heterogeneous ability groups. 
 

Figure 3.1 Item Characteristic Curve 
 

As an example, consider Figure 3.1 which depicts a item that falls at approximately 0.85 on the 
ability (horizontal) scale. When a person answers an item at the same level as their ability, then 
that person has a probability of roughly 50% of answering the item correctly. Another way of 
expressing this is that if we have a group of 100 people, all of whom have an ability of 0.85, we 
would expect about 50% of them to answer the item correctly. A person whose ability was above 
0.85 would a higher probability of getting the item right, while a person whose ability is below 
0.85 would have a lower probability of getting the item right. This makes intuitive sense and is 
the basic formulation of Rasch measurement for test items having only 2 possible categories 
(i.e., wrong or right). 
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Figugure 3.2 Category Response Curves for a One-Step Item  

 

Figure 3.2 extends this formulation to show the probabilities of obtaining a wrong answer or a 
right answer. The curve on the left (j = 0) shows the probability of getting a score of “0” while 
the curve on the right (j = 1) shows the probability of getting a score of “1”. The point at which 
the two curves cross indicates the transition point on the ability scale where the most likely 
response changes from a “0” to a “1”. Here, the probability of answering the item correctly is 
50%.  

The key step in the formulation, and the point at which the Rasch dichotomous model merges 
with the PCM, requires us to assume an additional response category. Suppose that, rather than 
scoring items as completely wrong or completely right, we add a category representing answers 
that, though not totally correct, are still clearly not totally incorrect. These relationships are 
shown in Figure 3.3. 

The left-most curve (j = 0) in Figure 3.3 represents the probability for all examinees getting a 
score of “0” (completely incorrect) on the item, given their ability. Those of very low ability 
(e.g., below - 2) are very likely to be in this category and, in fact, are more likely to be in this 
category than the other two. Those receiving a “1” (partial credit) tend to fall in the middle range 
of abilities (the middle curve, j = 1). The final, right-most curve (j = 2) represents the probability 
for those receiving scores of “2” (completely correct). Very high-ability people are clearly more 
likely to be in this category than in any other, but there are still some of average and low ability 
that can get full credit for the item. 
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Figure 3.3 Category Response Curves for a Two-Step Item 
 

Although the actual computations are quite complex, the points at which lines cross each other 
have a similar interpretation as for the dichotomous case. Consider the point at which the j = 0 
line crosses the j = 1 line, indicated by the left arrow. For abilities to the left of (or less than) this 
point, the probability is greatest for a “0” response. To the right of (or above) this point, and up 
to the point at which the j = 1 and j = 2 lines cross (marked by the right arrow), the most likely 
response is a “1”. For abilities to the right of this point, the most likely response is a “2”. 

Note that the probability of scoring a “1” response (j = 1) declines in both directions as ability 
decreases to the low extreme or increases to the high extreme. These points then may be thought 
of as the difficulties of crossing the thresholds between categories.  

An important implication of the formulation can be summarized as: If the commonly used Rasch 
model applied to dichotomously (right/wrong) scored items can be thought of as simply a special 
case of the PCM, then the act of scaling multiple-choice items together with polytomous items, 
whether they have three or more response categories, is a straightforward process of applying the 
measurement model. The quality of the scaling then can be assessed in terms of known 
procedures.  

One important property of the PCM is its ability to separate the estimation of item/task 
parameters from the person parameters. With the PCM, as with the Rasch model, the total score 
given by the sum of the categories in which a person responds is a sufficient statistic for 
estimating person ability (i.e., no additional information need be estimated). The total number of 
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responses across examinees in a particular category is a sufficient statistic for estimating the step 
difficulty for that category. Thus with PCM, the same total score will yield the same ability 
estimate for different examinees.  

The PCM is a direct extension of the dichotomous one-parameter IRT model developed by 
Rasch (Rasch, 1980). For an item/task involving mi score categories, one general expression for 
the probability of scoring x on item/task i is given by 

( ) ( )∑ ∑ ∑
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x = 0, 1, ..., mi, and by definition, ( )∑
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=−
0

0
0

j
ijDθ .  

The above equation gives the probability of scoring x on the i-th test item as a function of ability 
(θ ) and the difficulty of the mi steps of the task (Masters, 1982).  

According to this model, the probability of an examinee scoring in a particular category (step) is 
the sum of the logit (log-odds) differences between θ and Dij of all the completed steps, divided 
by the sum of the differences of all the steps of a task. Thissen and Steinberg (1986) refers to this 
model as a divide-by-total model. The parameters estimated by this model are (1) an ability 
estimate for each person (or ability estimate at each raw score level) and (2) mi threshold  
(difficulty) estimates for each task with mi + 1 score categories. 




